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The author investigates the problem of the existence and properties of 
bounded oscillations of a quasilinear system of the saddle type in the 
presence of a rapidly changing external force*. The obtained results 
generalize a theorem of Farnell. Langenhop and Levinson. 

The author expresses his gratitude to V.V. Nemytskii in whose seminar 
the preliminary results of this work were presented. 

1. Linear system with the (0, /3) property. Let us consider 
the linear homogeneous system of ordinary differential equations 

+ = P (t)r, 
21 

dt 
JG : L-l %I 

(1.1) 

Here 1: is a real n-dimensional vector (a column matrix) and P(t) is a 
defined and continuous for all values of t real n x n matrix which is 

(- 00 < t < + -). 

Let X(t) be a canonical 
system (1.1) such that X(0 
‘Ihen 

fundamental matrix of the solutions of the 
1 = I,, where I, is the unit n x n matrix. 

l For the sake of simplicity in the presentation, all considered 
matrices and functions will be assumed to be real. The basic results 
are also valid, with obvious modifications, for systems of differ- - 
ential equations whose right-hand sides are continuous complex func- 
tions of a real independent variable t. and analytic functions of the 
dependent variables; the solutions may be complex-valued. 
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Forced oscillations of a quasilinear system 1045 

x (t, to) = x (t) x-1 (LO) (--<<‘<+o”, ---<to<+ 00) (1.2) 

is a fundamental system of solutions determined by the initial condition: 
Nt,, t,) = I, (Cauchy’s matrix). 

Definition 1.1. W e shall say that the system (1.1) (or the matrix 
P(t)) has the (a, p) property if its Cauchy matrix X(t, to) can be broken 
up into two subsystems of solutions 

x, (t, to) = x (t) AX-’ (Lo), X, (t, t,) = X (t) BX-’ (t,,) (1.3) 

such that 

X, (t, to) (I < ue--a(f-fo) when t > to, 11 X, (t, t,,) (I < beP(f--ro) when t < to (1.4) 

Here a, b, a, and p are positive numbers; A and B are constant n x n 
matrices, and A + B = I,; 

Ilxll= zjG.j!-] norm of the matrix X=[r~ij]. 
i.i 

The inequalities (1.4) are generalizations of known Persidskii’s con- 
ditions [ 2 I, which are obtained when A = I, and B = 0. Similar two-sided 
conditions were used by Maizel’ 13 1. Analogous conditions for systems 
of differential equations in &Inach spaces are given by Krein [ 4 1, and 
Massera and Schtiffer [ 5 1 . 

We note that the system (1.1) h as the property (a, /3) if the matrix 
P(t) = P is constant, while m(m < n) of its characteristic numbers X,, 
. . . ) hl have negative real parts, and n - m characteristic numbers have 
positive real parts. In this case 

Here I,, and I,,- I are unit matrices of order m and n - m, while S is 
a nonsingular matrix which transforms the matrix P to the Jordan form; 
m is the rank of the matrix X(t, t,), and n - m is the rank of the matrix 
X(t, to)* 

In the more general case, the property (a, @) occurs when the system 
(1.1) is reducible [6,7 ] to a system with a constant matrix whose 
characteristic numbers have real parts different from zero. In particular, 
for example, a linear homogeneous system with a periodic matrix P(t), 
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without zero or pure imaginary characteristic exponents, has the (a, p) 
property. 

We note also that the system (1.1) will possess the (a, /3) property 
if 

p w = A (t) + Q (0 

where A(t) = [A,(t), . . . . h,(t)] is a diagonal matrix and Q(t) is 
absolutely integrable on (- =, + -) (two-sided L-diagonal system [8,9 I), 
and 

hl (t) < . . . \<h,(t)\<--<o<<[3\<h,+,(t)\(...~hn(t) 

Lemma 1.1. Let the matrix P(t) be continuous on (- =, + m) and possess 
the property (a, /3). Then there exists a bounded n x n matrix G(t, tl) 
E C' for t fatI (- m < t < + =; - m < tl < + -) such that 

(1) 
(2) 

(3) 

G(t, t - 0) - G (t, t + 0) = I, 
G’t (t, tl) = P (t) G (t, tl) when t + 11 
Gl,‘(t, tl) = - G(t, tl) P (tl) when t + ~1 
IlG (t, tl) I\< ce-yI’--lll Cc, T = const > 0) 

(1.5) 

(4) If, in addition, f(t) is a vector function of the n x 1 type, and 
continuous when - - < t < + m, then the nonhomogeneous system 

2 = p Cl) Y + f (0 (1.6) 

has a bounded solution on - - < t < + m 

+a 

rl (t) = I; G (~7 Q I (tl) dt, (1.7) 
-co 

provided that the integral (1.7) converges uniformly in t on every finite 
interval (- I, Z)C(- DO, + -), and is bounded on (- Q), + m). 

Proof. Let us set 

G (t, tl) = 
X,(t, tl) when t > tl 

-Xp(t, tl) ,when t <tl 

where the matrices X,(t, t,) and X,<t, t,) are given by Formulas (1.3). 

Obviously, we have 



Forced oscillations of a quasilinear systen 1047 

1) G (t, t - 0) - G (t, t + 0) = X (t) AX-l (t) + X (t) BX-’ (t) 
= x (t) (A + B) x-1 (t) = x (t) 1,X-l (t) = I, 

2) if C = A when t > tl and C = - B when t < tl, then 

G (t, tl) = X (t) CX-’ (tl) (1.8) 

and when t # tl we obtain 

Gt' (t, h) = X’ (t) CX-’ (tl) = P (t) X (t) CX-’ (tl) = P (t) G (t, tl) 

Gt,' (t, tl) = - x (t) cx-1 (tl) X' (h) X-l (tl) = 

= - X (t) CX-l (tl) P (t,)X (tl) X-’ (tl) = - G (2, tl) P (TV) 

3) Making use of the inequalities (1.4), we find that 

II G (t, tl) II < ue--a(L--Ll) when t > tl, 11 G (t, tl) II< be@t--ll) when t <k 

Hence, setting c = max (a, b) and y = min (a, /?> , we obtain (1.5). 

4) Let us consider the vector function determined by Formula (1.7). 
We have 

Performing the formal differentiation with respect to t of the last 
expression, and taking into account 1 and 2, we obtain 

11’ (t) = G (4 t - 0) f  (0 + \ P (4 G (t, tl) f  (td dtl - G (t, t + 0) f  (t) + 
--oo 

++rP (0 G (4 

+a 

h) f (h) dtl =f (t) + P (t) \ G (t, h) f (t,)dtl (I-9) 
I --oo 

Since the matrix P(t) is bounded on every finite interval (- 1, I), 
and since we assume that the integrals 

L +oO 

s, G (t, tl> f (tl) &, 
s 

G (t, h) f (tl) dtl 
1 

converge uniformly on (- 1, I), it is obvious that the integrals 

1 +m 

s 
Gt’ (t, tl) f (tl, c-01, 

s 
Gt’ (t, tl) f (tl) dtl 

--a3 t 
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also converge uniformly on (- 2, 2). Hence, by a known theorem of analysis, 
the derivative vector function q(t) is determined by (1.9) on - 00 < t < 
+ =J. From this it follows that 

rl’ PI = f (4 + p (0 11 (0 

i.e. q(t) is a bounded solution of the nonhomogeneous system (1.6). 

Corollary. ‘Ihe bounded solution q(t) of the homogeneous system (1.6) 
exists if: (a) the vector function f(t) is continuous and bounded on 
(- m, + ml; or (b) the matrix P(t) and the vector function 

F (t) = j f (tl) dtl 
0 

are continuous and bounded on (- m, + -) (the boundedness of the vector 
function f(t) is not assumed here). 

Proof. a) If 11 f(t) (( < k when t (3 (- 00, + -), where k is a positive 
constant, then the uniform convergence of the integral (1.7) on any 
finite interval, and its boundedness are obvious. 

b) Let 11 P(t) I\ < cl, and 11 F(t) (I < c2, where c1 and c2 are positive 
constants. lhen integration by parts yields 

-cc0 

rl (0 = +r G (t, tl) f (tl) dtl = \ G (t, tl) F’ (h) &I 
-co -co 

= G ct, tl) F (td / ;: 1: ; - +’ Gt,' (t, tl) F (tl) dtl 
-m 

+oO 

z j G (t, tl) P (h) F (h) dh = +r GI (t, tl) F (tl) dtl (1.10) 
-m -co 

Here 

G (4 tl) = G(t, tl) P (tl), II Gl (t, tl) \\ < II G (t, h) 11 (IP (tl) 1) < ccle-yI~--I~I 

Hence, the integral (1.10) converges uniformly in t on every finite 
interval of the axis - 00 < t < + 00. 

Note i.1. If f(t) is bounded, then 
tm 

r = sup 
t 

\ 
--oo 

1.2. If P(t) and F(t) are bounded, then in view of Formula (1.10) we 
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have 

II 9 (1) II < rl SUP II F (t) II c 
r, =sup 

1 I 
s II Gl (t, tl) II dtl) 

-cm 

Lemma 1.2. If the matrix P(t) and the vector function f(t) are almost 
periodic, and if P(t) has the (a, p) property while the homogeneous 
system (1.1) has no nontrivial solution bounded on the axis - m < t < + ~0, 
then the bounded solution q(t) of the nonhomogeneous system (1.6) is also 
almost periodic. 

This lenuna is a slight modification of a theorem by Favard [16 1. 

Proof. Let r be a general "almost period" of the matrix P(t) and of 
f(t) with an accuracy of 6, i.e. 

II *2 (4 II = IIP (t + 4 - p (0 II < E when _ w < t < + 
oc 

II *J (0 II = II f (t + 4 - f (4 II < 8 

Setting A,q (t) = q(t + r) - q(t), we obtain 

-$ [*,rl (41 = P (t>. *iv (4 + [Asp (0 q (t + T> + *: (01 

Since the matrix A,P(t) + q(t) + A, f(t) is bounded, and since by 
hypothesis of Lenvna 1.2 the nonhomogeneous system with matrix P(t), and 
with a bounded free term, has only one bounded solution, it follows that 

AT q (t) = +r G (t, tl) 1 ATP (h) .q (h + T) + A:f (t,)l dtl 
< -co 

Therefore 

II *zrl (0 II< I-E (M -I- I) for - = < I < + oc (ilf = S;P II q (1) II C t =) 

and, hence, q(t) is an almost periodic vector function. 

Note. If in the condition (1.4) A = I, and B = 0, or A = 0 and B = I,. 

then the homogeneous system has no nontrivial solution which is bounded 
on C-w. +m). 

Indeed, if, for example. A = I,, and B = 0, then X(t, t,,) = X,(t,, to) 

and the correctness of the remark follows easily from the inequality of 
(1.4). 

2. Existence of bounded solutions of a quasilinear system. 
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Let 

B.P. Dsmidovich 

dY l - = P (t) y + f (~4 y, p) + e (4 
dt 

(2.4) 

where y is the n x 1 solution vector; p is a small real parameter, o is 
a large positive parameter; P(t) is an n x n continuous matrix bounded 
on (- =, + -1 and possessing the (a, /3> property; f( t, y, c() is an n x 1 
vector function defined and continuous in the region D = { 1 t 1 < + -, 
II YII < + mP I PI < Al9 and satisfying in every subregion D, = ( I t 1 < 
+ -3 II Y II G r < + Q)! I p ( & cl,-, < A] the Lipschitz condition 

II f (4 Y7 CL) - f (4 27 I4 II < L (r, PO) II Y - 2 II (II v II < r. llz114r) (2.3, 

where L(r, ,uO) is a positive scalar function independent of t, whereby 

and furthermore 

lim L (r, ~0) = 0 as p0 --f 0 (2.3) 

II f (6 0, P) II < Jt (k = const) (2.4) 

Finally, it is assumed in (2.1) that the continuous R x 1 vector func- 
tion e(t) has a bounded integral on (- 00, + -) 

E (t) = \ e (11) a%, II E (4 II d IO (k, = con&) (2.-j) 
0 

Theorem 2.1. There exists a positive constant ,uLo such that when 
( p 1 < p. the system (2.1) h as at least one solution 77 = q(t) bounded on 
the entire axis - m < t < + 00. (If e(t) is bounded, then the boundedness 
of E(t) is not required.) 

‘Ihis result is analogous to a theorem of Perron [ 11 1 ; the assumptions 
relative to the real part of the system (2.1) are, however, more general; 
in particular, we do not assume the boundedness with respect to t. 

The author has obtained an analogous result for the case of a constant 
matrix, P(t) = const 112 1 . 

Proof. Let us consider the singular integral equation 

Y (~1 = +r G (t, tl) If (oh, Y (h>, P> + e (wh)l dh (2.W 
-m 

where G(t, t,) is determined on the basis of Lemma 1.1, and satisfies 
the inequality (1.5). Be cause of Lemma 1.1, the continuous bounded solu- 
tion q(t) of the integral equation (2.6) is a bounded solution of the 
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system (2.1). 

For the proof of the existence of the solution n(t) we make use of 
the method of successive approximations setting 

y(O) (t) = 0 

y(P)(t)= +r G (t, tl) [f (&I, y(P--1) (tl), p) + e (dl)] dtl (P= I,& . ..) (2.7) 

Taking into account the boundedness of the function E(t), we have 

y(l) (t) = ‘r G (t, tl) f (oh, 0, p) dtl + ‘m G (t, h) e (w~I) dtl 
--co -m 

+a3 
= 1 G (6 h) f (oh, 0, p) dtl + ; +r G (t, t&E (wtl) dtl 

--a3 --oo 

= +r G (4 tl) f (wtl, 0, p) dtl + ; G (t, tl) E (wtl) j ;:I,” _ 
-cx 

+m 
1 

-- 
0 \ Gi,’ (4 h) E (wtl) dtl = +r G (t, 21) f (oh, 0, p) dh + 

--m -co 
+a 

+ -& 1 G (t, tl) P (tl) E (oh) dtl 
-02 

From this it follows that on the basis of (2.4) and (2.5) we obtain 

where 

II!/(l) (t)I( < r/c + + . rdc1 = R (2.8) 

r = syp *r!l G (t, tl) ((dtr, rl = sup +(w\\ G (t, tl) P (tl) I\dtl 
-a3 ’ TcQ 

Making use of the condition (2.3), let us select a positive number pLo 
so small that for 1~ 1 < pLo the following inequality will hold: 

L=L@Rpo)<& 

ESy mathematical induction one can easily prove that all approximations 
p(t) (p = 1, 2, . . .) satisfy the inequality 

jy(P) (t) - y(p-1) (t) (I Q (-&)“-‘I? 

when - m < t < + m, and hence that 
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I I  y(P) (q 1) < 5 \ I  y(S) ( t )  -  y(*-l) (4 I I  < (  1 + + + *  l -  + -&) R < 2fl 
q=1 

By the usual procedure one proves the existence of 

q (t) = lim y(P) (t) where P4m 

for which one has the estimate 

IIT (t) - Y(P) (OlI< ($)P-‘R II 77 (4 II \< 2R 

(2.9) 

(2.10) 

where R is given by (2.8). 

From the last inequality it follows that 

?Afp) (9 z 11 (0 (-m<t<f=) 

'Ihe limit function q(t) will be the unique* bounded continuous solu- 
tion of the integral equation (2.6), and, hence, also a bounded solution 
of the quasilinear system (2.1). 

Note. The bounded solution q(t) of the nonlinear system (2.1) satisfy- 
ing the integral equation (2.6) will be called a regular solution. 

Corollary. If f(t, 0, p) E 0, then the amplitude of the regular bound- 
ed solution q(t) will be arbitrarily small provided that o is sufficient- 
ly large. 

Indeed, setting k = 0, and taking account of (2.8) and (2.101, we 
have 

II rl (t) II < * (2.11) 

Theorem 2.2. Suppose that the quasilinear system (2.1) is such that 
the matrix P(t) and also the vector functions f(t, y, p) and e(t) are 
almost periodic functions of t, and that in addition the homogeneous 
system (1.1) with matrix P(t) has no bounded nontrivial solutions on 
-00-C t<+m.l%en, if (pl\ct(O, the bounded solution q(t) of the quasi- 
linear system (2.1) will also be almost periodic. 

Biriuk [13 1, the author [12 I, and Langenhop [14 I have proved 

l The uniqueness of the bounded solution q(t) of the integral equation 
(2.6) is easily established by contradiction. 
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analogous theorems for the case of a constant matrix, P(t) = const. 

Proof. In view of Lemma 1.2, all successive approximations y(P)(t) 
(p = 1, 2, . . .) of the bounded solution (t) are almost periodic. Since 

y(P) (t) 1: q (G on (- 00, -1 m) 

the function n(t) will also be an almost-periodic vector function. 

Note. I f  A = In and B = 0, or if A = 0 and B = I,. the requirement of 
the absence of a nontrivial bounded solution of the homogeneous system 
(1.1) becomes superfluous (see Section 1, Note on Lemma 1. 2). 

Corollary. If the matrix P(t) is periodic of period T/o, and the func- 
tions f<t, y, p), e(t) are periodic in t with the couvnon period T, then 
under the hypotheses of theorem 2.2, the bounded solution q(t) of the 
quasilinear system (2.1) will be periodic of period T/o. 

If in addition f(t, 0, ,a) G 0, then 

(I q (t) /I < % sup I/i e (tl) dtl 11 (0 < t < T) (2.12) 

0 

Indeed, setting 

2 (Q = 1 (t + f) - rl (0 

and taking into account the periodicity of the function f(t, y, p), we 
obtain 

wtl, +I + f,, p) - f  (ok q (tl), p) ] dll 

From this it follows that 

suPW)Il< \a IIC ( t, t tl) II L I/ rl (tl + f) - rl (tl) /I dtl < 

<r& s&q rl ( t1+ $) - q (t1) 11 = f SYP II 2 (t) II 
\ 

Hence 

i.e. 

q (t + f) = rl (t) for --;a<t<+co 
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This proves that the bounded solution q(t) is periodic with period T/o. 

In regard to the inequality (2.12), it can be said that it is a direct 
consequence of Formula (2.11). 

Note. In [ 1 1 there was considered a system of the type (2.1) (without 
the parameter p) under the hypotheses: 1) the matrix P(t) = const; 2) the 
functions f(t, y). e(t) = keO( t) (k > 0), and E(t) are periodic in t with 
period 7’; 3) 11 f( t, y) - f( t, z) 11 < L II y - z 11 , where L is a small enough 
positive constant; 4) f( t. 0) G 0. mr 0 > o0 there is guaranteed the 
existence of a periodic solution y = p(t) of period l/o. and such that 

where p is a positive constant independent of the parameter k. Our 
theorem 2.2 strengthens this result. 

3. Stability of the regular bounded solution of the quasi- 
linear system. ‘Theorem 3.1. Let the matrix P(t) possess the (a, p) 
property and be such that the rank of X=(t,,, to) is equal to m(m < n), 
where t,, is fixed. 'Ihen, if 1~ I < p,,, the regular bounded solution q(t) 
of the quasilinear system (2.1) is asymptotically conditionally stable 
in the Liapunov sense when t + + Q) on the manifold S,+ of the solutions 
y(t), which depends on the parameter m, and this stability is of the ex- 
ponential type; namely, if 

II rl (G II < 2R7 y (w-%, IIY (to) - rl (to) II < P (to) 

where p(t,) is a sufficiently small positive constant, then 

II Y (9 - rl (411 < & lly (to) - 7 (t~)Ile-‘~~~~(~-~~) for t> to (3.1) 

where y is determined by Formula (1.5). 

Note. Analogous results were obtained for the case P(t) = const by 
Petrovskii [ 15 I, Coddington and tevinson [ 16 I, and by the author [ 12 1. 

Proof. Let us set A= A(t) = y(t) - q(t). From the system (2.1) we 
have 

where 

db 
- = P (t) A (t) + q~ (t, A (t)) dl (3.2) 

‘p (4 A (0) = f (wk rl (4 + A CL), 14 - f Cd rl (4, 14 (3.3) 

Let us consider the singular integral equation 
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A (t) = X, (4 to) g + \ G (4 tl) 'p (tl, A (tl)) dtl 
i. 

(3.4) 

where g is a constant n x 1 vector. If A(t) is a continuous vector func- 
tion satisfying Equation (3.4), then by differentiating bation (3.4) 
with respect to t and taking into account the properties of the matrix 
X,(t, t,,) and G(t, tl> when t > t,, we obtain 

A' (0 = P (4 X, (4 to) g + [C (6 t - 0) - G (t, t + 0)l cp (t, A (t)) + 

+ p (t) +y c (k h) ‘p (t I, A (h)) dtl E P (t) A (t) + cp (t, A (t)) 

1. 

Then the solution A(t) of the integral equation (3.4) will also be a 
solution of the differential equation (3.2). 

Let US choose a positive number pI so small that for 1~ 1 < p'l the 
following inequality is true: 

JL = L (3R, pJ < min ($, 2) (O<Y <I) (3.5) 

Next, we subject the norm of the vector g to the inequality 

II r: II s -$ '(fb< R (1 -q)) (3.6) 
ma let 

r = a Ilgll (3.7) 

For the purpose of finding the solution of the integral equation (3.4) 
in the class of functions {[[A(t) 11 ,< R when to Q t < + -1 under the con- 
ditions (3.5) and (3.6), we make use of the method of successive approxi- 
mations, ana set 

A(") (t) = X, (t, to) g 

Acs) (t) = A(") (t) + 's' G (t, tl) q (tl, A(s-1) (~1)) dtl 
1. 

(3.8) 

where t 2 to (s = 1, 2, . ..). Since 

11 A(O) (t)II < a \I g(( e-Y(f-'O) < re-'lzy('-fo) 

Ii'p (t, A(O) (1) j(<LlIj A(O) (t) Il<~re-'~~y(f-~J 

we obtain by the use of the properties of the matrix G(t, t,) and Formu- 
las (3.8) and (3.9) 
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I\ A(1) (1) 11 < r (1 + q) e-'/z-ffl--l.) 

In general, if 

11 A(-) (t) 11 ( r (1 + q + . . . + qs-1) e-‘/zY(‘-~o) (3.9) 

then Formulas (3.8) and (3.5) yield 

/IA(‘) (t) II< 11 A(O) (1) [I + \‘ce-yl~-~~I g r (1 + q + . . . + qs-I) e-‘/2u(‘l-lJ dll < 
1. 

< re-"zy(*-fJ +- 5 (q + q2 + . . . j- qs) J (t) < 

< P (1 + q + . . . + 4”) e-‘jzy(~--o) 

Hence, for any natural number we have the inequality 

(3.10) 

Furthermore, since 11 q(t) + A's'(t)II < 3R, we have 

SYPIIA (‘+l) (t) - A(‘) (t) (( < s;p +r ,, G (t, tl) 11 x 
c 
1, 

x 11 f (oh, q (h) + A@) (h) p) - f (oh, q (h) + A(‘-l) (h), /L) jl dtl L:: 

< .+ sup [I A’“‘(t) _ A(‘-l) (t) (I (s = i, 2. -) 

t 

Whence, just as in the proof of Theorem 2.1, we find that 

A@) --, 3A(t) on (- 0~. i m) 

'Ihe limit vector function A(t) satisfies the integral equation (3.4), 
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and hence also the differential equation (3.2). Since q(t) satisfies 
Equation (2.1), it follows from the type of the equation (3.2) that 
y(t) = q(t) + A(t) will also be a solution of (2.1). 

Taking the limit as s + 00 in (3.10), we obtain 

In view of the facts that the rank of the matrix X,(t, to) is equal 
to m, and that $(t, A(t)) is arbitrarily small in norm if the quantity 
11 g 11 is sufficiently small, it follows from the implicit function theory 
that for 11 g I( < g, there exists a manifold S,+(O) of initial values 
Ah,), and a corresponding manifold of vector functions g depending on m 
parameters h,, . . . , h, such that 

II g II < K (to) II A (to) II 

Here K(t,) is some positive function. ‘Ihe set of solutions y(t) = 
7 (t) + A(t) , where A( t > E S,+(O), we shall denote by Sat. From Formulas 
(3.11) with y(t) E S, to , we obtain 

II Y (4 - v (0 II < 1” Q -K (to) 11 y (to) - q (to) (I e-‘lzY+‘o) when 1 >,I,, 

provided only that 

II?m - rl@o)II< & = p(l,), ( 
a R: 

h=max l--g, x 
J 

Hence 

II3 (4 - 77 (0 II < & II y (to) - q (to) II e+Y(‘-‘~) (3.12) 

Corollary 3.1. If p is the rank of the matrix Xg(to, to), then the 
regular bounded solution q(t) of the quasilinear system (2.1) is condi- 
tionally asymptotically stable as t 3 - 00 on the manifold SP- of solu- 
tions depending on a parameter p; furthermore, this stability is of the 
exponential type. 

Corollary 3.2. If the rank m of the matrix Xa(tO, to) is equal to the 
order of the system (l.l), then the regular bounded solution q(t) of the 
quasilinear system (2.1) is exponentially stable in the Liapunov sense 
when t + + m (compare 11 I). 
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